The correct option is D 12
Cn=1n∫1n+1tan−1(nx)sin−1(nx)dx
Put nx=t⇒dx=dtn
Cn=1n1∫nn+1tan−1tsin−1tdt
Now, L=limn→∞n2⋅Cn
=limn→∞n1∫nn+1tan−1tsin−1tdt (∞×0) form
L=limn→∞1∫nn+1tan−1tsin−1tdt1/n (00) form
Applying Leibnitz rule,
L=limn→∞0−tan−1nn+1sin−1nn+1(1(n+1)2)−1n2
=π4×2π=12