The correct option is D C(θ)≠0 for all θ∈R
C(θ)=∞∑n=0cos(nθ)n!=(1+cosθ1!+cos2θ2!+cos3θ3!+...+cosnθn!)
C(0)=1+11!+12!+13!+..... upto ∞ term =e
C(π)=1−11!+12!−13!+..... upto ∞ term =e−1
So, C(0).C(π)=1 and
C(0)+C(π)=e+1e>2
C′(θ)=(−sinθ1!−2sin2θ2!−3sin3θ3!+...+nsinnθn!)
Therefore at θ=0⇒C′(θ)=0