The correct option is A (x2+y2)2=a2x2−b2y2
The equation of the chord of the circle x2+y2=a2 whose middle point is (α,β) is
xα+yβ=α2+β2⇒y=−αβx+α2+β2β
Now the above equation is the tangent to the hyperbola
using the tangency condition
m=−αβ,c2=a2m2−b2⇒(α2+β2β)2=a2α2β2−b2
⇒(α2+β2)2=a2α2−b2β2
Hence, the locus of the middle point is
(x2+y2)2=a2x2−b2y2