The correct option is
D 1/√7The circles are
(x−x0)2+(y−y0)2=r2 and
(x−x0)2+(y−y0)2=4r2The centre is z0=x0+iy0
Hence circles can be written as |z−z0|=r and |z−z0|=2r.
α and 1¯¯¯¯α lies on these circles.
Hence |α−z0|=r and |1¯¯¯¯α−z0|=2r
⟹|α−z0|2=r2 and |1¯¯¯¯α−z0|2=(2r)2
|α−z0|2=r2
(α−z0)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯α−z0)=r2
(α−z0)(¯¯¯¯α−¯¯¯z0)=r2
|α|2+|z0|2−z0¯¯¯¯α−α¯¯¯¯¯z0=r2
⇒ z0¯¯¯¯α+α¯¯¯¯¯z0=|α|2+|z0|2−r2 --------(1)
Similarly |1¯¯¯¯α−z0|2=(2r)2=4r2
|1−z0¯¯¯¯α|2=4r2|α|2
(1−z0¯¯¯¯α)(1−¯¯¯¯¯z0α)=4r2|α|2
1−z0¯¯¯¯α−¯¯¯¯¯z0α+|α|2|z0|2=4r2|α|2
⇒ z0¯¯¯¯α+α¯¯¯¯¯z0=1+|α|2|z0|2−4r2|α|2 ------(2)
From (1) and (2)
|α|2+|z0|2−r2=1+|α|2|z0|2−4r2|α|2
|α|2+r2+22−r2=1+|α|2(r2+22)−4r2|α|2 (Given 2|z0|2=r2+2)
|α|2−r22=−7|α|2r22+|α|2
∴ |α|=1√7