wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let complex numbers α and 1¯¯¯¯α lie on circles (xx0)2+(yy0)2=r2 and (xx0)2+(yy0)2=4r2, respectively. If z0=x0+iy0 satisfies the equation 2|z0|2=r2+2, then |α|=

A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
17
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 17
|αz0|=r..............(1)

1¯¯¯¯αz0=2r........(m)

2|z0|2=r2+2.......(3)

α.¯¯¯¯α=|α|21¯¯¯¯α=α|α|2

Putting 1¯¯¯¯α=α|α|2 in (m), we get

∣ ∣α|α|2z0∣ ∣=2r........(2)

Squaring (1), we get,
|α|2+|z0|2(α¯¯¯¯¯z0+¯¯¯¯αz0)=r2

|α|2+r22+1(α¯¯¯¯¯z0+¯¯¯¯αz0)=r2....(4)

|α|2|α|4+|z0|2(α¯¯¯¯¯z0+¯¯¯¯αz0|α|2)=4r2

1|α|2(1(α¯¯¯¯¯z0+¯¯¯¯αz0))=4r2|z0|2

=4r2(r2+22)
=7r221

1(α¯¯¯¯¯z0+¯¯¯¯αz0)=|α|2(7r221)

α¯¯¯¯¯z0+¯¯¯¯αz0=1+|α|2(17r22)

Substituting in (4), we get

|α|2+r22+1(1+|α|2(17r22))=r2

r22+|α|2(7r22)=r2

|α|2(7r22)=r22

|α|2=17

|α|=17

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ethanol and Ethanoic Acid
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon