wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let complex numbers α and 1¯¯¯¯α lie on circles (xx0)2+(yy0)2=r2 and (xx0)2+(yy0)2=4r2, respectively. If z0=x0+iy0 satisfies the equation 2|z0|2=r2+2, then |α|=

A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
17
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 17
(xx0)2+(yy0)2=r2
|zz0|=r
Point α lies on it.
|αz0|=r
|αz0|2=r2 (1)

Similarly, 1¯¯¯¯αz0=2r
1¯¯¯¯αz02=4r2|α|2 (2)

Subtracting (1) from (2),
1¯¯¯¯αz02|αz0|2=r2(4|α|21)
1+|α|2|z0|2z0¯¯¯¯αα¯¯¯z0|α|2|z0|2+z0¯¯¯¯α+α¯¯¯z0=r2(4|α|21)
1+|α|2|z0|2|α|2|z0|2=r2(4|α|21)
(1|α|2)(1|z0|2)r2(4|α|21)=0

2|z0|2=r2+2r2=2(1|z0|2)
(1|α|2)(1|z0|2)+2(1|z0|2)(4|α|21)=0
(1|z0|2)(1|α|2+8|α|22)=0
(1|z0|2)(7|α|21)=0

(7|α|21)=0,(|z0|>1)|α|=17

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon