The correct option is C 1√7
The intersection of circles, the basic concept is to use equations simultaneously and properties of modulus of complex numbers.
Formula used |z|2=z.¯z and
|z1−z2|2=(z1−z2)(¯z1−¯z2)
=|z1|2−z1¯z2−z2¯z1+|z2|2
Here, (x−x0)2+(y−y0)2=r2
and (x−x0)2+(y−y0)2=4r2 could be written as,
|z−z0|2=r2and|z−z0|2=4r2
Since, α and 1¯α lies on first and second respectively.
∴|α−z0|2=r2and∣∣1α−z0∣∣2=4r2⇒(α−z0)(¯α−¯z0)=r2⇒|α|2−z0¯α−¯z0α+|z0|2=r2 ...(1)
And ∣∣1¯α−z0∣∣2=4r2⇒(1¯α−z0)(1α−¯z0)=4r2⇒1|α|2−z0α−¯z0¯α+|z0|2=4r2
Since, |α|2=α.¯α⇒1|α|2−z0|α|2¯α−¯z0α|α|2+|z0|2=4r2⇒1−z0¯α−¯z0α+|α|2|z0|2=4r2|α|2 ...(2)
On subtracting Eqs. (1) and (2), we get
(|α|2−1)+|z0|2(1−|α|2)=r2(1−4|α|2)⇒(|α|2−1)(1−|z0|2)=r2(1−4|α|2)⇒(|α|2−1)(1−r2+22)=r2(1−4|α|2)Given,|z0|2=r2+22(|α|2−1).(−r22)=r2(1−4|α|2)(|α|2−1)=−2+8|α|27|α|2=1∴|α|=1√7