Composition of Inverse Trigonometric Functions and Trigonometric Functions
Let cos-1x+co...
Question
Let cos−1(x)+cos−1(2x)+cos−1(3x)=π, where x>0. If x satisfies the cubic equation ax3+bx2+cx−1=0, then a+b+c has the value equal to
A
24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
26
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
28
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C26 We have, cos−1(x)+cos−1(2x)+cos−1(3x)=π ⇒cos−1(2x)+cos−1(3x)=π−cos−1(x) ⇒cos−1[(2x)(3x)−√1−4x2√1−9x2]=cos−1(−x) ⇒6x2−√1−4x2⋅√1−9x2=−x ⇒(6x2+x)2=(1−4x2)(1−9x2) ⇒x2+12x3=1−13x2 ⇒12x3+14x2−1=0⋯(1) x satisfies the equation ax3+bx2+cx−1=0
Comparing this equation with equation (1), we get a=12,b=14,c=0 ∴a+b+c=12+14+0=26