x3+ax2+bx+c=0
Let f(x)=x3+ax2+bx+c ⋯(1)
Given that cosθ,cosθ2 and cosθ4 are the zeros of f(x)
f(x)=(x−cosθ)(x−cosθ2)(x−cosθ4)
f(1)=(1−cosθ)(1−cosθ2)(1−cosθ4)and f(1)=1+a+b+c [from eqn(1)]
⇒1+a+b+c=(1−cosθ)(1−cosθ2)(1−cosθ4)⇒1+a+b+c=(2sin2θ2)(2sin2θ4)(2sin2θ8)
Now, limθ→0[1+a+b+cθ6]=limθ→0⎡⎣23(sinθ/2θ/2)2(sinθ/4θ/4)2(sinθ/8θ/8)2×1212⎤⎦
=2−9×12×12×12=1512
∴k=512