wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let cosθ,cosθ2 and cosθ4 are the roots of the equation x3+ax2+bx+c=0. If limθ0[1+a+b+cθ6]=1k, then the value of k is

Open in App
Solution

x3+ax2+bx+c=0
Let f(x)=x3+ax2+bx+c (1)
Given that cosθ,cosθ2 and cosθ4 are the zeros of f(x)
f(x)=(xcosθ)(xcosθ2)(xcosθ4)
f(1)=(1cosθ)(1cosθ2)(1cosθ4)and f(1)=1+a+b+c [from eqn(1)]

1+a+b+c=(1cosθ)(1cosθ2)(1cosθ4)1+a+b+c=(2sin2θ2)(2sin2θ4)(2sin2θ8)

Now, limθ0[1+a+b+cθ6]=limθ023(sinθ/2θ/2)2(sinθ/4θ/4)2(sinθ/8θ/8)2×1212

=29×12×12×12=1512
k=512

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon