wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let d be the minimum value of f(x)=5x22x+265 and f(x) is symmetric about x=r. If n=1(1+(n1)d)rn1 equals pq, where p and q are relative prime, then find the value of (3qp).

Open in App
Solution

Given, f(x)=5x22x+265 symmetric about x=r
f(x)=5x22x+15+5=5(x15)2+5
f(x) is symmetric about x=15 with min values, d=5
Now, S=n=1(1+(n1)d)rn1=n=1[1+(n1)5](15)n1
S=1+65+1152+1653+.... [A.G.P series]
15.S=15+652+1153+...
_________________________
45S=1+55+552+553+....
=2+(15+152+....)
=2+15115 [sum of infinite G.P = a1r]
45S=2+14=94
S=4516P=45,q=16
3qp=3(16)45=4845=3

1136723_1141292_ans_20bfeabbaed447ffa7f0ae7b503155df.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon