Ellipse:
x2a2+y2b2=1−−−(i)focus : F1:(ae,0) & F2:(−ae,0)
centre:(0,0)
M is perpendicular on tangent at P(acosϕ,bsinϕ)
equation of tangent ⇒xcosϕa+ysinϕb=1−−−(ii)
length of CM=|0+0−1cos2ϕa2+sin2ϕb2|=a2b2b2cos2ϕ+a2sin2ϕ=d−−−(iii)
now, PF1=√(acosϕ−ae)2+b2sinϕ2=√a2cos2ϕ+b2sin2ϕ+a2e2−2a2ecosϕ
PF2=√(acosϕ+ae)2+b2sinϕ2=√a2cos2ϕ+b2sin2ϕ+a2e2+2a2ecosϕ
⇒PF1−PF2=(0+..2√(a2cos2ϕ+b2sin2ϕ+a2e2−2a2ecosϕ)−(a2cos2ϕ+b2sin2ϕ+a2e2+2a2ecosϕ))
⇒2.2a2
⎷(b2cos2ϕ+a2sin2ϕ)2−b2(a2b2)((b2cos2ϕ+a2sin2ϕ)2)=+4a2√1−b2d2.......(d=a2b2b2cos2ϕ+a2sin2ϕ)