wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let d be the perpendicular distance from the centre of the ellipse x2a2+y2b2=1 to the tangent drawn at a point P on the ellipse. If F1andF2 are the two foci of the ellipse then show that: (PF1PF2)2=4a2[1b2d2] .

Open in App
Solution

Ellipse:x2a2+y2b2=1(i)
focus : F1:(ae,0) & F2:(ae,0)
centre:(0,0)
M is perpendicular on tangent at P(acosϕ,bsinϕ)
equation of tangent xcosϕa+ysinϕb=1(ii)
length of CM=|0+01cos2ϕa2+sin2ϕb2|=a2b2b2cos2ϕ+a2sin2ϕ=d(iii)
now, PF1=(acosϕae)2+b2sinϕ2=a2cos2ϕ+b2sin2ϕ+a2e22a2ecosϕ
PF2=(acosϕ+ae)2+b2sinϕ2=a2cos2ϕ+b2sin2ϕ+a2e2+2a2ecosϕ
PF1PF2=(0+..2(a2cos2ϕ+b2sin2ϕ+a2e22a2ecosϕ)(a2cos2ϕ+b2sin2ϕ+a2e2+2a2ecosϕ))
2.2a2 (b2cos2ϕ+a2sin2ϕ)2b2(a2b2)((b2cos2ϕ+a2sin2ϕ)2)=+4a21b2d2.......(d=a2b2b2cos2ϕ+a2sin2ϕ)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon