The correct option is B 27
Given, Δ1=∣∣
∣∣a1b1c1a2b2c2a3b3c3∣∣
∣∣ and Δ2=∣∣
∣
∣∣α1β1γ1α2β2γ2α3β3γ3∣∣
∣
∣∣
Δ1Δ2=∣∣
∣
∣∣a1α1+b1α2+c1α3a1β1+b1β2+c1β3a1γ1+b1γ2+c1γ3a2α1+b2α2+c2α3a2β1+b2β2+c2β3a2γ1+b2γ2+c2γ3a3α1+b3α2+c3α3a3β1+b2β2+c3β3a3γ1+b3γ2+c3γ3∣∣
∣
∣∣
We know that
If the elements of row or column of a determinant of order 3 consists of m,n,p terms respectively, then determinant can be expressed in the sum of m×n×p determinant of same order.
So, the number of decompositions =3×3×3=27