The correct option is C 3p+q=0
Multiplying R1,R2,R3 by a,b,c respectively, and then taking a,b,c common from C1,C2, and C3, we get
Δ=∣∣
∣∣−bcab+acac+abab+bc−acbc+abac+bcbc+ac−ab∣∣
∣∣
Now, using C2→C2−C1 and C3→C3−C1, and then taking (ab+bc+ca) common from C2 and C3, we get
Δ=∣∣
∣∣−bc11ab+bc−10ac+bc0−1∣∣
∣∣×(ab+bc+ca)2
Now, applying R2→R2+R1, we get
Δ=∣∣
∣∣−bc11ab01ac+bc0−1∣∣
∣∣(ab+bc+ca)2
Expanding along C2, we get
Δ=(ab+bc+ca)2[ac+bc+ab]
=(ab+bc+ca)3
If Δ=27, then (ab+bc+ca)3=27
⇒ab+bc+ca=3
and a2+b2+c2=3,
∴(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
⇒a+b+c=±3
⇒a+b+c=3 (since all the roots are positive)
⇒3p+q=0