Let Δ denotes the area of the acute angled ΔABC and ΔP be the area of its pedal triangle. If Δ=kΔp, then k is equal to
A
12cosB
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12cosA
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12sinAsinBsinC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12cosAcosBcosC
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D12cosAcosBcosC
In ΔDEF ∠D=1800−2A ∠E=1800−2B ∠F=1800−2C DE=ccosC EF=acosA DF=bcosB
Area of ΔABC=12bcsinA⋯(i)
Area of pedal triangle ΔP=12×DE×FD×sinD ΔP=12×(ccosC)×(bcosB)×sin(1800−2A) ΔP=12×(bc)(cosCcosB)×(2sinAcosA)⋯(ii)
Using equation (i) and (ii) ΔΔP=12(bcsinA)12×(bcsinA)(2cosAcosCcosB) Δ=1(2cosAcosCcosB)×ΔP ∴k=1(2cosAcosBcosC)