1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Cofactor
Let Δr = r ...
Question
Let
Δ
r
=
∣
∣ ∣ ∣
∣
(
r
−
1
)
n
!
6
(
r
−
1
)
2
(
n
!
)
2
4
n
−
2
(
r
−
1
)
3
(
n
!
)
3
3
n
2
−
2
n
∣
∣ ∣ ∣
∣
, then the value of
n
+
1
∏
r
=
2
Δ
r
=
Open in App
Solution
Given ,
Δ
r
=
∣
∣ ∣ ∣
∣
(
r
−
1
)
n
!
6
(
r
−
1
)
2
(
n
!
)
2
4
n
−
2
(
r
−
1
)
3
(
n
!
)
3
3
n
2
−
2
n
∣
∣ ∣ ∣
∣
∴
n
+
1
∏
r
=
2
Δ
r
=
∣
∣ ∣ ∣
∣
∏
n
+
1
r
=
2
(
r
−
1
)
n
!
6
∏
n
+
1
r
=
2
(
r
−
1
)
2
(
n
!
)
2
4
n
−
2
∏
n
+
1
r
=
2
(
r
−
1
)
3
(
n
!
)
3
3
n
2
−
2
n
∣
∣ ∣ ∣
∣
=
∣
∣ ∣ ∣
∣
1.2.3......
n
(
n
!
)
6
1
2
.
2
2
.
3
2
.
.
.
.
.
n
2
(
n
!
)
2
4
n
−
2
1
2
.
2
3
.
3
3
.
.
.
.
.
n
3
(
n
!
)
3
3
n
2
−
2
n
∣
∣ ∣ ∣
∣
=
∣
∣ ∣ ∣
∣
(
n
!
)
(
n
!
)
6
(
n
!
)
2
(
n
!
)
2
4
n
−
2
(
n
!
)
3
(
n
!
)
3
3
n
2
−
2
n
∣
∣ ∣ ∣
∣
=
0
(since
C
1
and
C
2
are identical)
Suggest Corrections
0
Similar questions
Q.
If
Δ
r
=
∣
∣ ∣ ∣
∣
r
2
r
−
1
3
r
−
2
n
2
n
−
1
a
1
2
n
(
n
−
1
)
(
n
−
1
)
2
1
2
(
n
−
1
)
(
3
n
−
4
)
∣
∣ ∣ ∣
∣
, then the value of
n
−
1
∑
r
=
1
Δ
r
:
Q.
If
Δ
r
=
∣
∣ ∣ ∣
∣
2
n
+
1
2
n
+
1
n
(
n
+
2
)
1
1
−
1
n
C
r
2
r
2
r
+
1
∣
∣ ∣ ∣
∣
then the value of
n
∑
r
=
0
Δ
r
is
Q.
Let
Δ
r
=
∣
∣ ∣ ∣
∣
r
−
1
n
6
(
r
−
1
)
2
2
n
2
4
n
−
2
(
r
−
1
)
3
3
n
3
3
n
2
−
3
n
∣
∣ ∣ ∣
∣
. Then the value of
n
∑
r
=
1
Δ
r
is:
Q.
If
D
r
=
⎛
⎜
⎝
2
r
−
1
2
.
3
r
−
1
4
.
5
r
−
1
α
β
γ
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
,
then
the
value
of
∑
n
r
=
1
D
r
is