The correct options are
A (0,π/2)
B (π/2,π)
C (−π/2,0)
D (0,π/4)
Δ(x) = ∣∣
∣∣sinxcosxsin2x+cos2x01110−1∣∣
∣∣
⇒Δ′(x)=∣∣
∣∣cosx−sinx2cos2x−2sin2x01110−1∣∣
∣∣
Now expanding along first column,
Δ′(x)=cosx(−1−0)+1(−sinx−2cos2x+2sin2x)=−(sinx+cosx)+2(sin2x−cos2x)
Now Δ′(0)=−3,Δ′(π/2)=1,Δ′(π)=−1,Δ′(−π/2)=3,Δ′(π/4)=2−√2,
Hence Δ′(x) will vanish at least once in (0,π/2),(π/2,π),(0,π/4),(−π/2,0)