wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let [.] denote the greatest integer function.
Consider f(x)={2|x|,1x1|x2|x,1<x3 and g(x)=sinx1,0x<π2[x]cos(x2),π2xπ.

Which of the following statements is/are CORRECT?

A
limx1+g(f(x))=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
limxπ/2g(f(g(x)))=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
limx2+f(g(x))f(x)2=12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
limx0+g(f(x))(f(x)2)2=12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D limx0+g(f(x))(f(x)2)2=12
limx1+g(f(x))=limx0g(x) which does not exist.

limxπ/2g(f(g(x)))
=limx0+g(f(g(π2x)))=limx0+g(f(cosx1))
=limx0+g(2|cosx1|)=0

limx2+f(g(x))f(x)2=limx0+f(g(2+x))f(2+x)2=limx0+f(2cosx)4
=limx0+|2cosx2|(2cosx)4=limx0+2cosx24=0


limx0+g(f(x))(f(x)2)2=limx0+g(2x)(2x2)2
=limx0+[2x]cos(2x2)x2
=limx0+1cosxx2=12

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Right Hand Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon