Two fair dice are rolled then
Sample space
S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(1,1),(1,2),(1,3),(1,4),(1,5)(1,6),(2,1),(2,2),(2,3),(2,4),(2,5)(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5)(6,6),⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
Total number of possible outcomes
=36
X: Denote the sum of the numbers obtained when two fair dice are rolled.
Hence,
X can take any value of
2,3,4,5,6,7,8,9,10,11 or 12.
For
X=2, the possible outcome is
(1,1).
⇒P(X)=136
For
X=3, the possible outcomes are
(1,2)
and
(2,1)
⇒P(X)=236=118
For
X=4, the possible outcomes are
(1,3),(2,2)and(3,1)
⇒P(X)=336=112
For
X=5, the possible outcomes are
(1,4),(4,1),(2,3) and (3,2)
⇒P(X)=436=19
For
X=6, the possible outcomes are
(1,5),(5,1),(2,4),(4,2) and (3,3).
⇒P(X)=536
For
X=7, the possible outcomes are
(1,6),(6,1),(2,5),(5,2),(3,4) and (4,3).
⇒P(X)=636=16
For
X=8, The possible outcomes are
(2,6),(6,2),(3,5),(5,3) and (4,4).
⇒P(X)=536
For
X=9, the possible outcomes are
(5,4),(4,5),(3,6) and (6,3)
⇒P(X)=436=19
For
X=10, the possible outcomes are
(5,5),(4,6)and(6,4).
⇒P(X)=336=112
For
X=11, the possible outcomes are
(6,5)
and
(5,6)
⇒P(X)=118
For
X=12, the possible outcome is
(6,6).
⇒P(X)=136
Hence,the required probability distribution is,
X234567P(X)1361181121953616
X89101112P(X)53619112118136
The Mean of
X is given by
μ=E(X)=∑ni=1xipi
Putting the value of
xipi
⇒E(X)=2×136+3×118+4×112+5×19
+6×536+7×16+8×536+9×19
+10×112+11×118+12×136
⇒E(X)=118+16+13+59+56+76+109+1
+56+1118+13
⇒E(X)=1+3+6+10+15+21+20+18+15+11+618
⇒E(X)=12618
∴E(X)=7
We know that variance of
X is
𝑉𝑎𝑟
(X)=E(X2)−(E(X))2 ...
(1)
Here,
E(X)=7
Finding
E(X2)
E(X2)=∑ni=1x2i.p(xi)
⇒E(X2)=4×136+9×118+16×112+25×19
+36×536+49×16+64×536+81×19
+100×112+121×118+144×136
⇒E(X2)=19+12+43+259+5
+496+809+9+253+12118+4
⇒E(X2)=2+9+24+50+90+147+160+162+150+121+7218
⇒E(X2)=98718
⇒E(X2)=54.833
Now, putting the value of
E(x2)&E(x) in
(1)
⇒Var(X)=54.833−(7)2
⇒Var(X)=54.833−49
∴Var(X)=5.833
∵ Standard deviation
=√Var(X)
Put value of
Var(X)
Standard deviation
=√5.833
Standard deviation
=2.415