wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let 9x9x+3 then find the value of the sum f(12006)+f(22006)+f(32006)+......f(20052006)

Open in App
Solution

f(x)=9x9x+3
f(1x)=91x91x+3
=99x99x+3
=99+3.9x
And f(x)+f(1x)=9x9x+3+91x91x+3
=3(3+9x)3(3+9x)=1
f(x)+f(1x)=1
Now, f(12)=912912+3=33+3=12
f(12006)+f(22006)+f(32006)+f(42006)+...+f(20052006)
=f(12006)+f(20052006)+f(22006)+f(20042006)+...+f(10022006)+f(10042006)+f(10032006)
=f(12006)+f(112006)+f(22006)+f(122006)+...+f(110022006)+f(12)
Since f(x)+f(1x)=1
=(1+1+1+1+...)(1002)times +12
=1002+12=2004+12=20052=1002.5

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adaptive Q18
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon