The correct option is D y′(3)=−2e−3
dydx+y=f(x)
I. F. =ex
Solution is yex=∫exf(x)dx+C
Now, if 0≤x≤2, then
yex=∫exe−x dx+C
⇒yex=x+C
x=0, y(0)=1⇒C=1
∴yex=x+1
⇒y(x)=x+1ex
y(1)=2e
y′(x)=ex−(x+1)exe2x
y′(1)=e−2ee2=−ee2=−1e
If x>2, then
yex=∫ex−2 dx
⇒yex=ex−2+C
⇒y=e−2+Ce−x
As y is continuous,
∴limx→2x+1ex=limx→2(e−2+Ce−x)
⇒3e−2=e−2+Ce−2
⇒C=2
∴ For x>2,
y(x)=e−2+2e−x
Hence, y(3)=2e−3+e−2=e−2(2e−1+1)
y′(x)=−2e−x
y′(3)=−2e−3