The correct option is A 1
sinxa=cosxb=tanxc=2
∴a=sinx2, b=cosx2, c=tanx2
We have R=bc+12c+2a1+2b
⇒R=cosx⋅tanx4+1tanx+sinx1+cosx
=sinx4+cosxsinx+sinx1+cosx
=sinx4+cosx(1+cosx)+sin2xsinx(1+cosx)
=sinx4+1sinx
Now, by A.M. ≥ G.M.
12(sinx4+1sinx)≥√14sinx⋅1sinx
∴sinx4+1sinx≥1
So, the minimum value of R is 1.