wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let 0a,b,c,dπ where b and c are not complementary, such that (2cosa+6cosb+5cosc+9cosd)=0 and (2sina6sinb+7sinc9sind)=0,
then the value of 3×cos{a+b}cos{b+c} is

Open in App
Solution

(2cosa+6cosb+5cosc+9cosd)=0 [Given ]
2cosa+9cosd=6cosb7cosc
2cosa+9cosd=(6cosb+7cosd)
Squaring on both sides we get
4cos2a+81cos2d+36cosacosd=36cos2b+49cos2c+84cosbcosceq:1

and,
(2sina6sinb+7sinc9sind)=0 [Given ]
(2sina9sind)=(6sinb7sinc)
Squaring on both sides, we get
4sin2a+81sin2d36sinasind=36sin2b+49sin2c84sinbsinceq:2

Adding both 1 and 2 we get
4cos2a+4sin2a+81sin2d+81cos2d+36cosacosd36sinasind=36cos2b+36sin2b+49sin2c
+49cos2c+84cosbcosc84sinbsinc
4+81+36cos(a+d)=36+49+84cos(b+c)
85+36cos(a+d)=85+84cos(b+c)
36cos(a+d)=84cos(b+c)
cos{a+d}cos{b+c}=73
3×cos{a+b}cos{b+c}=7

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon