(2cosa+6cosb+5cosc+9cosd)=0 [Given ]
⇒2cosa+9cosd=−6cosb−7cosc
⇒2cosa+9cosd=−(6cosb+7cosd)
Squaring on both sides we get
⇒4cos2a+81cos2d+36cosacosd=36cos2b+49cos2c+84cosbcosceq:1
and,
(2sina−6sinb+7sinc−9sind)=0 [Given ]
⇒(2sina−9sind)=(6sinb−7sinc)
Squaring on both sides, we get
⇒4sin2a+81sin2d−36sinasind=36sin2b+49sin2c−84sinbsinceq:2
Adding both 1 and 2 we get
⇒4cos2a+4sin2a+81sin2d+81cos2d+36cosacosd−36sinasind=36cos2b+36sin2b+49sin2c
+49cos2c+84cosbcosc−84sinbsinc
⇒4+81+36cos(a+d)=36+49+84cos(b+c)
⇒85+36cos(a+d)=85+84cos(b+c)
⇒36cos(a+d)=84cos(b+c)
⇒cos{a+d}cos{b+c}=73
∴3×cos{a+b}cos{b+c}=7