Let a>0,c>0,b=√ac,a,c and ac≠1,N>0, then which of the following is true?
A
logaNlogcN=logaN−logbNlogbN−logcN
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
logcNlogaN=logaN−logbNlogbN−logcN
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
logaNlogcN=logbN−logaNlogbN−logcN
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
logcNlogaN=logaN−logbNlogcN−logbN
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is AlogaNlogcN=logaN−logbNlogbN−logcN Let logaN=x,logcN=y,log√acN=z From last relation log√ac(N)=z N=(√ac)z=(ac)z2 ⇒logaN=z2(1+logac)⇒x=z2(1+logac) & logcN=z2(1+logca)⇒y=z2(1+logca) or 2xz−1=logac & 2yz−1=logca (2xz−1)(2yz−1)=1 4xyz2−2xz−2yz=0 ⇒2xyz−x−y=0 ⇒2xy−zx−yz=0 ⇒(xy−yz)=zx−xy ⇒xy=x−zz−yorlogaNlogcN=logaN−logbNlogbN−logcN