wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a1,a2,a3,....,a11 be real numbers satisfying a1=15,27−2a2>0 and ak=2ak−1−ak−2 for k=3,4,.......,11.

If a21+a22+...+a21111=90, then the value of a1+a2+...+a1111 is equal to

A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 0
a1=15a3=2a2a1a4=2a3a2=4a22a1a2=3a22a1a5=2a4a3=6a24a12a2+a1=4a23a1a6=5a26a13a1+2a1=5a24a1a7=2a6a5=10a28a14a2+3a1=6a25a1ak=(k1)a2(k2)a1k3a12+a22+a32+....+a11211=90
=a12+a22+11k=3[(k1)2a22+(k2)2a122(k1)(k2)a1a2]=990=a12+a22+a2211k=3(k2+12k)+11k=3(k2+44k)a122a1a211k=3(k23k+2)=990

=a12+a22+11k=3(a22+a122a1a2)k2+11k=3k(2a224a12+6a1a2)+(a22+4a124a1a2)11k=3(1)=990=a12+a22+(a22+a122a1a2)[k(k+1)(2k+1)6]112+(2a224a12+6a1a2)[k(k+1)2]112+(a22+4a124a1a2)[k]112=990

=a12+a22+(a22+a122a1a2)[11(12)(23)2(3)(5)6]+(2a224a12+6a1a2)[11(12)2(3)2]+(a22+4a124a1a2)[112]=990

=a12+a22+(a22+a122a1a2)(501)+(2a224a12+6a1a2)63+(a22+4a124a1a2)9=990=(1+501+9126)a22+a12(1+501252+36)+2a1a2(501+18918)=990(a1=15)=385a22+643509900a2=990=385a229900a2+63360=0a2=+9900±(9900)24×385×633602×385a2=12(a1+a2+a3+....+a11)11=[a1+a2+11k=3(k1)a2(k2)a1]11=[a1+a2+(a2a1)11k=3k+(2a1a2)11k=3(1)]11=15+12+(3)[k(k+1)2]112+(2×1512)[k]11211=(273×63+18×9)11=0

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon