Let a1,a2,a3,a4,a5εR denote a rearrangement of equation p1x5+p2x3+p3x2+p4x+p5=0 then, equation a1x4+a2x3+a3x2+a4x+a5=0 has
If a1 < a2< a3 < a4 < a5 < a6, then the equation (x−a1)(x−a3)(x−a5)+2(x−a2)(x−a4)(x−a6) = 0 has