Let a,b∈R and a2+b2≠0. Suppose S={z∈C:z=1a+ibt,t∈R,t≠0}, where i=√−1. If z=x+iy and z∈S, then (x,y) lies on
x+iy=a−ibta2+b2t2
x=aa2+b2t2 …(1)
y=−bta2+b2t2 …(2)
If a=0,b≠0,x=0, then we get option D
If a≠0,b=0,y=0, then we get option C
a2+b2t2=ax and a2+b2t2=−bty
∴ax=−bty⇒t=−aybx ….(3)
Putting (3) in (1), we get
x(a2+b2a2y2b2x2)=a
⇒x(a2+a2y2x2)=a
⇒a2(x2+y2)=ax
⇒x2+y2−1ax=0
Circle with center (12a,0)
Radius =√(−12a)2+02−0=12a