A=R×R
(a,b)∗(c,d)=(a+c,b+d)
Commutative:let(a,b),(c,d)∈A.
(a,b)∗(c,d)=(a+c,b+d)
=(c+a,d+b)
= (c,d)∗(a,b)∀(a,b),(c,d)∈A
∗ is commutative.
Associative:let(a,b),(c,d),(e,f)∈A.
((a,b)∗(c,d))∗(e,f)=((a+c,b+d))∗(e,f)
=(a+c+e,b+d+f)
=(a+(c+e),b+(d+f))
=(a,b)∗(c+e,d+f)
=(a,b)∗((c,d)∗(e,f))∀(a,b),(c,d),(e,f)∈A
∗ is associative.
Identity element:
Let (e1,e2)∈A is identify element for ∗ operation by definition.
⇒(a,b)∗(e1,e2)=(a,b)
⇒(a+e1,b+e2)=(a,b)
a+e1=a,b+e2=b
⇒e1=0,e2=0
⇒(0,0)∈A
⇒(0,0) is identity element for ∗.
Inverse:
Let (b1,b2)∈A is inverse of element (a,b)∈A then by definition.
(a,b)∗(b1,b2)=(0,0)
(a+b1)=0,b+b2=0
⇒(−a,−b)εA is inverse of every elemnt (a,b)∈A.