Let α=π3, then the solution set of the inequality logsinα(2−cos2x)<logsinα(1−sinx), where xε(0.2π) and x≠π2, is :
Which of the following statements are correct?
1 . if sin θ = sin α ⇒ θ = nπ + (−1)nα where α ∈ [ - π2 , π2] n ∈ I
2 . if cos θ = cos α ⇒ 2nπ±α where α ∈ [0,π] n ∈ I
3 . if tan θ = tan α ⇒ θ = nπ + α where α ∈ (- π2 , π2 ) n ∈ I