Let α=π3 then the solution set of the inequality logsinα(2−cos2x)<logsinα(1−sinx) where xϵ(0,2π) and x≠π2 is
A
(α,π−α)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(α,π2)∪(π2,π−α)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(π3,5π6)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(0,π2)∪(π2,π)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(0,π2)∪(π2,π) logsinα(2−cos2x)−logsinα(1−sinx)<0logsinα(2−cos2x1−sinx)<0sin(π3)=√32<1,log10[2−cos2x1−sinx]>0Gives,2−cos2x1−sinx>11+sin2x>1−sinx⇒sinx(1+sinx)>0sinx∈(0,1)x∈(0,π2)⋃(π2,π)