Let cos−1(x)+cos−1(2x)+cos−1(3x)=π. If x satisfies the cubic ax3+bx2+cx−1=0, then a+b+c has the value equal to
A
24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
26
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
27
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C 26 cos−1(x)+cos−1(2x)+cos−1(3x)=π cos−1(x)+cos−1(2x)=π−cos−1(3x) cos−1(2x2−√(1−x2)(1−4x2))=π−cos−1(3x) 2x2−√(1−x2)(1−4x2)=cos(π−cos−1(3x)) 2x2−√(1−x2)(1−4x2)=−3x 2x2+3x=√(1−x2)(1−4x2) Squaring on both the sides we get 4x4+9x2+12x3=(1−x2)(1−4x2) 4x4+9x2+12x3=1−5x2+4x4 14x2+12x3=1 12x3+14x2−1=0 ax3+bx2+cx−1=0 Comparing coefficients, we get a=12 b=14 c=0 Hence a+b+c=12+14+0 =26