Let cos(α−β)=1and cos(α+β)=1e, where α,βϵ[−π,π] and e is the exponential number.The number of values of the pair (α,β) satisfying both the equations, is
cos(α−β)=1 and cos(α+β)=1e
α,βϵ[−π,π]⇒α+βϵ[−2π,2π] and α−βϵ[−2π,2π]
thus solution in the given interval are,
α−β=−2π,0,2π, but in this
case α−β=−2π,2π are not possible, α−β=0 is only possible equation
and α+β=−2π+cos−1(1e),−cos−1(1e),cos−1(1e),2π−cos−1(1e)
hence solutions are,
α=β=−π+12cos−1(1e),−12cos−1(1e),12cos−1(1e),π−12cos−1(1e)
thus there is 4 possible pair.