The correct option is C 4
F(x2)=x2(1+x)
Differentiating w.r.t to x, we get
2xF′(x2)=2x(1+x)+x2⇒F′(x2)=(1+x)+x2
Substituting x2=t⇒x=√t, we get
F′(t)=(1+√t)+√t2 ...(1)
Now, in F(x)=∫x0f(t)dt
Using Leibnitz theorem,
F′(x)=1⋅f(x)+0
Substituting value from (1),
f(x)=(1+√x)+√x2f(4)=(1+√4)+√42=4