Let f(x) be a continuous function such that f(a−x)+f(x)=0 for all xϵ[0,a]. Then ∫a0dx1+ef(x) is equal to
Let f(x) be a continuous function such that f(a−x)+f(x)=0 (i) for all x[0,a].
Then,
∫a0dx1+ef(x)
Let y=∫a0dx1+ef(x)
We can also write y=∫a0dx1+ef(a−x)
Using (i) we can write f(a−x)=−f(x)
1+ef(a−x)=1+e−f(x)
1+ef(a−x)=ef(x)1+ef(x)
y=∫a0ef(x)1+ef(x)
y=∫a0dx1+ef(x)
Adding both we get 2y=∫a0dx
y=a2