wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=9x9x+3. Show f(x)+f(1x)=1, and hence evaluate f(11996)+f(21996)+f(31996)+...+f(19951996).

Open in App
Solution

f(x)=9x9x+3 (i)
and f(1x)=91x91x+3
f(1x)=99x99x+3=99+3.9x
f(1x)=93(3+9x) (ii)
Adding Eqs. (i) and (ii), we get
f(x)+f(1x)=9x9x+3+93(3+9x)
=3.9x+93(9x+3)=3(9x+3)3(9x+3)
f(x)+f(1x)=1 (iii)
Now, putting x=11996,21996,31996,...,9981996 in Eq. (iii), we get
f(11996)+f(19951996)=1
f(21996)+f(19941996)=1
f(31996)+f(19931996)=1
..........
..........
f(9971996)+f(9991996)=1
f(9981996)+f(9981996)=1
or f(9981996)=12
Adding all the above expression, we get
f(11996)+f(21996)+...+f(19951996)=(1+1+1+...upto997times)+12
=997+12
=997.5

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Nature and Location of Roots
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon