The correct option is C 2λ
f(x)=ex+1ex−1
f(−x)=e−x+1e−x−1=1+ex1−ex
=−ex+1ex−1
⇒f(−x)=−f(x)
Hence, f(x) is an odd function.
Consider, ∫1−1tf(t)dt=2∫10tf(t)dt(∵tf(t) is even)
=2∫10xf(x)dx (Integration is independent of change of variable)
=2∫10xex+1ex−1dx
=2λ(∵∫10ex+1ex−1.xdx=λ given)
⇒∫1−1tf(t)dt=2λ