The correct option is B decreasing on [0,∞)
f(x)=log(π+x)log(e+x)
f′(x)=log(e+x)×1π+x−log(π+x)1e+x(log(e+x))2
=log(e+x)×(e+x)−(π+x)log(π+x)(π+x)(e+x)(log(e+x))2
Since log function is an increasing function and e<π, log(e+x)<log(π+x).
Thus (e+x)log(e+x)<(e+x)log(π+x)<(π+x)log(π+x) for all x>0.
Thus, f′(x)<0 for ∀x>0
⇒f(x) decreases on (0,∞)
Ans: B