The correct options are
B continuous everywhere
D differentiable everywhere except at x=0
f(x)=|x|+|sinx|x∈(−π/2,3π/2)piecewisefunctionsoff(x)aref(x)=−x−sinxx∈(−π/2,0]=+x+sinxx∈(0,π/2]=+x−sinxx∈(π/2,3π/2)f′(x)=−1−cosxx∈(−π/2,0]=1+cosxx∈(0,π/2]=1−cosxx∈(π/2,3π/2)Ltx→0+f(x)=Ltx→0−f(x)=f(0)=0andLtx→π/2+f(x)=Ltx→π/2−f(x)=f(π/2)=1⇒f(x)iscontinuousatx=0,π/2f′(0+)=0andf′(0−)=2f′(0+)≠f′(0−)⇒f(x)isnotdifferentiabletox=0