f(x)=limn→∞⎛⎜⎝cos
⎷xn⎞⎟⎠n
g(x)=limn→∞(1−x+x.n√e)n
Taking log on both sides
lnf(x)=limn→∞−sin√xncos√xn.−12√xn.xn2−1n2
lnf(x)=limn→∞−sin√xn.xcos√xn.2√xn
lnf(x)=−12.limn→∞(11)x.sin√xn√xn
lnf(x)=−12limn→∞sin√xn√xn.x
lnf(x)=−x2......⎛⎜
⎜
⎜
⎜⎝∵n⟶∞√xn⟶0⇒lim√xn→0sin√xn√xn=1⎞⎟
⎟
⎟
⎟⎠
⇒f(x)=e−x/2→1
Now g(x)=limn→∞(1−x+xn√e)n
Taking ln on both sides,
⇒lng(x)=limn→∞nlog(1−x+x.e1/n)
⇒lng(x)=limn→∞1(1−x+x.e1/n).(x.e1/n).−1n2−1n2 (Applying L-Hospital rule)
⇒lng(x)=(11).x.(1)1
⇒lng(x)=x
⇒g(x)=ex
limx→0ℓ(f(x))ℓ(g(x))=limx→0ℓ(e−x/2)ℓ(ex)=−x2x=−12