Let f(x)= maximum {x+|x|,x−[x]}, where [x]= greatest integer ≤x. Then, ∫2−2f(x)dx is equal to
A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B5 f(x)=max{x+|x|,x−[x]} I=∫2−2f(x)dx=∫−1−2f(x)dx+∫0−1f(x)dx+∫10f(x)dx+∫21f(x)dx f(x)=⎧⎪
⎪⎨⎪
⎪⎩x+2;−2<x<−1x+1;−1<x<02x;0<x<12x;1<x<2 We get I=∫−1−2(x+2)dx+∫0−1(x+1)dx+∫10(2x)dx+∫21(2x)dx =[x22+2x]−1−2+[x22+x]0−1+[x2]10+[x2]21 =12−2−42+4+0−12+1+1+4−1=5