The correct option is B (−3/2,0)∪(0,3/2).
f(x)=sin3x+λsin2x
f′(x)=3sin2xcosx+2λsinxcosx
For maxima or minima,
f′(x)=0
⇒3sin2xcosx+2λsinxcosx=0
∴sinxcosx(3sinx+2λ)=0 ......(1)
∴sinx=0orcosx=0orsinx=−2λ/3
cosx=0 is not possible as −π/2<x<π/2
∴sinx=0i.ex=0
sinx=−2λ/3
−1<−2λ3<1
−3<−2λ<3
⇒3>2λ>−3
−32<λ<32
∴λϵ(−32,0)∪(0,32). (λ cannot be 0 as the solution are to be distinct. )
When λ lies in the above intervals, there are two distinct solutions, one gives maximum and the other minimum.