n∑r=1Δr=∣∣ ∣ ∣∣∑nr=1(2r+1)6n(n+2)f(n)∑nr=12r−13.2n+1−6g(n)∑nr=1r(n−r+1)n(n+1)(n+2)h(n)∣∣ ∣ ∣∣
But
n∑r=1(2r+1)=2n∑r=1r+n=2⋅n(n+1)2+n=n(n+2)
n∑r=12r−1=2n−1
n∑r=1r(n−r+1)=(n+1)n∑r=1r−n∑r=1r2
=(n+1)n(n+1)2−n(n+1)(2n+1)6=16n(n+1)(n+2)
Thus,
n∑r=1Δr=∣∣ ∣ ∣ ∣∣n(n+2)6n(n+2)f(n)2n−16(2n−1)g(n)16n(n+1)(n+2)n(n+1)(n+2)h(n)∣∣ ∣ ∣ ∣∣=0
∵C1 and C2 are proportional.