Let f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩x−4|x−4|+a;x<4a+b;x=4x−4|x−4|+b;x>4 .Then f(x) is continuous at x=4 when
A
a=0,b=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a=1,b=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a=−1,b=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a=1,b=−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Da=1,b=−1 We have L.H.L.=limx→4−f(x) =limh→0f(4−h) =limh→04−h−44−h−4+a =limh→0(−hh+a)=a−1
R.H.L.=limx→4=f(x) =limh→0f(4+h) =limh→04+h−4|4+h−4|+b=b+1 ∴f(4)=a+b Since f(x) is continuous at x=4, limx→4−f(x)=f(4)=limx→4+f(x) or a−1=a+b=b+1 or b=−1 and a=1