Let f(x)=∣∣
∣
∣∣secxcosxsec2x+cotxcscxcos2xcos2xcsc2x1cos2xcsc2x∣∣
∣
∣∣ then the value of ∫π/2π/4f(x)dx is?
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π/48
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−π2−π15√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of the above
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D None of the above Applying R2→R2−R3 f(x)=∣∣
∣
∣∣secxcosxsec2x+cotxcscx−sin2x001cos2xcsc2x∣∣
∣
∣∣ =−(−sin2x)=∣∣∣cosxsec2x+cotxcscxcos2xcsc2x∣∣∣ =sin2x[cosxcsc2x−cos2x(sec2x+cotxcscx)] cosx−sin2x−cos2x=cosxsin2x−12(1−cos2x) Thus , ∫π2π4f(x)dx=[13sin3x−12x+14sin2x]π2π4 =13−π4−13⋅12√2+π8−14 =112−π8−16√2