The correct options are
B f(x) increases in the interval (0,2) and decreases in the interval (−∞,0)∪(2,∞).
C x=3 is the point of inflection.
D f(x) is concave down in (−∞,0)∪(0,3).
f(x)=x−1x2
f′(x)=x2−(x−1).2x(x4=2−xx3
For f(x) to be increasing
f′(x)>0⇒2−xx3>0
⇒xϵ(0,2)
For f(x) to be decreasing
f′(x)<0⇒2−x(x3<0
⇒xϵ(−∞,0)∪(2,∞)
Now f′′(x)=x3(−1)−(2−x).3x2x6=2(x−3)x4
For f(x) to be concave down f′′(x)<0
⇒2(x−3)x4<0⇒xϵ(−∞,0)∪(3,∞)
also for point of inflection f′′(x)=0⇒x=3