Let f(x)=|x|x if x≠0 and f(0)=0 and a,b∈R be such that a<b. Then value of I=∫baf(x)dx is
A
|b|−|a|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
12(b2−a2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Max{|a|,|b|}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Min{|a|,|b|}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A|b|−|a| Note that f(x)=⎧⎪⎨⎪⎩−1ifx<00ifx=01ifx>0 If 0≤a<b, then I=∫badx=b−a=|b|−|a| If a<0≤b then I=∫0a(−1)dx+∫b01dx=a+b=b−(−a) =|b|−|a| If a<b<0, then I=∫ba(−1)dx=−b+a=|b|−|a|