Let f(x)=∫x2(1+x2)(1+√1+x2)dx and f(0)=0. Then f(1) is equal to
A
loge(1+√2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
loge(1+√2)−π4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
loge(1+√2)+π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aloge(1+√2)−π4 Let f(x)=I=∫x2(x2+1)(1+√x2+1)dx=∫√x2+1−1x2+1dx=∫(1√x2+1−1x2+1)dx=I1+I2 Where I1=∫1√x2+1dx Substituting x=tant⇒dx=sec2tdt I1=∫sectdt=∫sec2t+tantsecttant+sectdt Again substituting u=tant+sect⇒du=(sec2t+tantsect)dt I1=∫1u=logu+c=log(√x2+1+x)+c And I2=∫1x2+1dx=−tan−1x+c Hence f(x)=I=log(√x2+1+x)−tan−1x+Cf(0)=0⇒log1+0+C=0⇒C=0f(1)=log(√2+1)−π4