The correct option is D b∈(−2,−1)∪(1,∞)
Given f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩−x3+(b3−b2+b−1)(b2+3b+2),0≤x≤12x−3,1≤x≤3
is, f(x) is decreasing on [0,1]and increasing on [1,3]
Here, f(1)=−1 is the smallest value at x=1
∴ Its smallest value as.
limx→1−f(x)=limx→1−(−x3)+(b3−b2+b−1)b2+3b+2
b3+b2+b−1b2+3b+2≥0
⇒(b2+1)(b−1)(b+1)(b+2)≥0
∴b∈(−2,−1)∪[1,∞)