Let f(x)=limn→∞(x2+2x+3+sinπx)n−1(x2+2x+3+sinπx)n+1. Then
If [.] denotes greatest integer function and f(x) = [x] {sinπ[x+1]+sinπ[x+1]1+[x]}, then
Let f: R → R be a function defined by f(x) = max {x, x3}, then-
Let f(x) be defined in [–2,2] by f(x)={max{√4−x2,√1+x2}−2≤x≤0min{√4−x2,√1+x2}0<x≤2 . Then f(x) is