Let f(x)=limn→∞1(3πtan−12x)2n+5. Then the set of values of x for which f(x)=0 is
Given, f(x)=limn→∞1(3πtan−12x)2n+5=0
or[(3πtan−12x)]n→∞
or(3πtan−12x)>1
or|tan−12x|>π3
⇒tan−12x<−π3ortan−12x>π3
⇒2x<−√3 or 2x>√3,i.e.|2x|>√3
Let f(x) = |x−3| +|x−5|
Then f(x) = 2x - 8 if x ≥ 5
= 8 - 2x if x ≤ 3