wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=limntan1(4n2(1cosxn)) and g(x)=limnn22lncos(2xn), then limx0e2g(x)ef(x)x6

A
83
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
73
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
53
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 83
f(x)=limntan1(4n2(1cosxn))
f(x)=tan1(limn(4n2(1cosxn)))
Replace n with 1h, where as n,h0, we get
f(x)=tan1(4limh0(1cos(xh)h2))
limx01cosxx2=12
f(x)=tan1(4limh0(x21cos(xh)(xh)2))
f(x)=tan1(2x2)
g(x)=limnn22lncos(2xn)
Replace n with 1h, where as n,h0, we get
g(x)=limh0lncos(2xh)2h2
limx0log(1+h)h=1&limx01cosxx2=12
g(x)=limh0(ln(1(1cos(2xh)))(1cos(2xh)))(1cos(2xh))2h2
g(x)=limh02x2(1cos(2xh))4(xh)2=x2
g(x)=x2
Now,
L:limx0e2g(x)ef(x)x6=limx0e2x2etan12x2x6
Assume tan12x2=θ, then x2=tanθ2, where as x0,θ0
L=limx08etanθeθtan3θ=8limx0eθetanθθ1tan3θ
L=8limx0etanθθ1θ3
Using L'Hospital's rule, we get
L=83

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon