The correct option is A 83
f(x)=limn→∞tan−1(4n2(1−cosxn))
⇒f(x)=tan−1(limn→∞(4n2(1−cosxn)))
Replace n with 1h, where as n→∞,h→0, we get
⇒f(x)=tan−1(4limh→0(1−cos(xh)h2))
∵limx→01−cosxx2=12
⇒f(x)=tan−1(4limh→0(x21−cos(xh)(xh)2))
⇒f(x)=tan−1(2x2)
g(x)=limn→∞n22lncos(2xn)
Replace n with 1h, where as n→∞,h→0, we get
⇒g(x)=limh→0lncos(2xh)2h2
∵limx→0log(1+h)h=1&limx→01−cosxx2=12
⇒g(x)=limh→0−(ln(1−(1−cos(2xh)))−(1−cos(2xh)))⋅(1−cos(2xh))2h2
⇒g(x)=limh→0−2x2(1−cos(2xh))4(xh)2=−x2
⇒g(x)=−x2
Now,
L:limx→0e−2g(x)−ef(x)x6=limx→0e2x2−etan−12x2x6
Assume tan−12x2=θ, then x2=tanθ2, where as x→0,θ→0
∴L=limx→08etanθ−eθtan3θ=8limx→0eθetanθ−θ−1tan3θ
⇒L=8limx→0etanθ−θ−1θ3
Using L'Hospital's rule, we get
L=83